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Abstract. We have studied the family of orbits encounterad
when particles are emitted in al] directions from a point
source, in the presence of a Coulomb potential whose centre
is displaced with respect to the source.

This is a simple system in which all the calculations can be
done analytically, We found that, depending on the sign of
the potential, the effective cross section exhibits glory or
rainbow divergences. We provide an approach for studying
these effects which is suited for a course on classical
mechanics.

1. Introduction

There are a number of interesting aspects concerning
the treatment of trajectories and scattering processes
in a central force field which are commonly omitted
in the standard textbooks on classical mechanics
(Goldstein 1965, Landav and Lifshitz 1976). For
instance, it has been pointed out (Caplan ef al
1977) that usually students do not clearly undes-
stand the relation between the constants of integra-
tion of the problem and the starting conditions
which specify one particular evolution. In this con-
text, the calculation of an orbit from its initial condi-
tions seems to be a pedagogically sound but neglected
exercise.

In this paper, we shall study the family of orbits
travelled by particles subject to an inverse square
law of force, all starting from a fixed point in space
with the same initial velocity. This system shows
many interesting properties, as described by Laporte
in his article of 1970 (Laporte 1970). Furthermore,
this problem is by no means academic since, besides
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Resumen. Hemos estudiado la familia de trayectorias de un
conjunto de particulas emitidas en todas direcciones por una
fuente puntual que se encuentra desplazada respecto de un
centro de potencial Coulombiano. Este es un sistema simpie,
en el que todos los cdlculos pueden realizarse
analiticamente. Encontramos que, dependiendo del signo
del potencial, 1a seccion eficaz efectiva presenta divergencias
de Gloria 0 Arco Iris. Encaramos el estudio de estos efectos
desde un punto de vista apropiado para un curso de
mecanica clasica,

being obviously related to the launching of satellites
from a space-based position (Caplan er al 1977,
Laporte 1970), it represents a physical situation
which occurs in atomic physics. Actually, we first
became interested in the subject of this paper while
studying the decay of an autoionizing state formed
by the impact of a slow charged ion. In a semiclassi-
cal treatment of this problem, the trajectory of the
emitted electron is affected by the post-collision inter-
action with the Coulomb field of the cutgoing projec-
tile (Swenson er al/ 1991, Barrachina and Macek
1989). When analysed in a moving reference frame
attached to the projectile, this problem can be
reduced to the one discussed in this paper.

Here we show that the family of classical Coulomb
orbits starting from a point in space provides an
elegant framework for the introduction of the glory
and rainbow effects in scattering processes. Both
effects, besides producing a great fascination, convey
a considerable pedagogical interest since they intro-
duce the student into different areas of physics of
increasing complexity, from simple classical trajec-
tories and geometrical optics, to wave interference
(Bryant and Jarmie 1974, Walker 1976, Nussenzveig
1977, Gillis et af 1982), The calculations, not being
too lengthy or difficult, are very well suited for
an intermediate or advanced course on classical
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Rainbow and glory scattering

mechanics. Furthermore, all the results are given by
simple analytical expressions.

In section 2 we shall describe some geometrical
features of the family of Coulomb trajectories
travelled by particles emitted from a fixed point in
space. Afterwards we derive, in section 3, the disper-
sion function which relates the deflection angle to the
initial conditions at the Jaunching point. This disper-
sion function is used in section 4 to calculate an effec-
tive cross section which exhibits rainbow and glory
divergences. Finally, in sections 5 and 6 we discuss
how these rainbow and glory effects relate to analo-
gous phenomena in atomic, nuclear and optical physics.

2. Coulomb trajectories starting from a point
in space

Let us consider the case of a particle of mass m which
is released with initial velocity vy from a point P
which is at a given distance R from a force centre
with an inverse square dependence on the distance,
The initial velocity v, makes an angle ¢ with an axis
through the starting point and the force centre, as
shown in figure 1. This angle ¢ is measured counter-
clockwise.

Let r and & be plane polar coordinates of the par-
ticle {as shown in figure 1), the origin O being at the
force centre. The potential energy is given by
¥(r) = k/r, which applies for both the gravitational
and the Coulomb force problem. If & < 0 we shall
be dealing with an attractive potential, and k>0
stands for a repulsive one. Since this is a2 central

Figure 1. Geometrical situation at time ¢ after the
projectile of mass m has been emitted with velocity v
from a point P at a distance R from a force centre at O
with potential Wr} = &/r. The coordinates r and 7 define
the position of the particle at time ¢,
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Figure 2. Distance of minimum approach r,;, and angle
&y, which define the position of the perihelion. We have
also pictured the deflection angle @, defined as
lim, s oo B-

potential, the angular momentum L is conserved
and the orbit is planar, The equation of the frajec-
tory reads (Caplan ef al 1977)

L ’;_’;‘ + (kL2 + 2mE/L2 cos(8 — 6y).

r
{1)

The phase angle 8, defines the direction of a vector
which points from the force centre to the peri-
helion, as shown in figure 2. The orbit is symmetrical
about this direction, which is fixed by the initial con-
ditions of launch (Laporte 1970}

cotdy = (1 + TLICTR) tane. (2)

Upoen replacing the energy
E= % mvg + % (3)
and the angular momenitum

L = —-mRyysing, (4)
the following result is obtained:

gsinza = —%(1 +cos ) + sin o sin(f — o),

(5)
where the dimensionless parameter
2k
A=—= 6
mui R ©)

represents the ratio between the potential and kinetic
energies at the moment of emission. We see in
equation (5) that eack particular orbit is fully
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Figure 3. Famlly of orbits for the situation of figure T with
A= 2k/vaR = ~3. The envelope of all these elliptic trajectories
is also an eliipse, whose two focl are the attractive centre O and

the point of release P.

characterized by the parameters 4 and o. The eccen-
tricity reads (Landau and Lifshitz 1976)

2EL2 4(A + 1
5111

{7

For the case of an attractive potent:lal, ie k <0,the
orbit is an ellipse if the initial conditions satisfy
A < —1. If the initial velocity is increased so that
A = —1 the orhit becomes a parabola with its vertex
in the point of release. For 4 > —1, the orbit is a
hyperbola. Finally, when the potential is repulsive,
all possible orbits are hyperbolic,

The problem of Kepler ellipses starting from a
point in space has been previously analysed by other
authors (Caplan et al 1977, Laporte 1970). Here we
shall be studying a scattering problem, and there-
fore, the orbits are expected to go out into infinity.
This means that we will only deal with the case
€ > 1. Thus, we will consider the case of hyperbolic
or parabolic orbits which at infinity have a velocity

m=b‘0\¢'l+A. (8)

Let us now determine the accessible region in space
for all the orbits startmg at a given point with equal
initial kinetic energy mvo/2 but different emission
angles o. This region is bounded by a curve ry(f),
which is called the envelope of the trajectories. In
order to obtain this curve (Warner and Huttar
1991), we consider that for each value of 4, the
radjus » jn equation (5) defines, as a function of a,
all the accessible points in that particular direction.
Thus, to determine the boundary point ry, for a given
8, we require {(dr/8a)l; =0 in equation (5). We
obtain

1 4 cosé

siné

tana=A

, 9

which, upon substitution into equation (5), yields

Rl A
Ty

(1 + 4)?cos). (10)
This equation is well defined except for the inmterval
—-1< A4 <0 But in this case, the frajectories are
hyperbolae around an atiractive centre, and there is
no excluded region in space. For 4 < -1, the pre-
vious equation defines the envelope of all the orbital
ellipses, as shown in figure 3. This envelope is itself an
ellipse, whose two foci are the attractive centre O and
the point of release P (Caplan er 2/ 1977). Finaliy, in
the case of a repulsive potential (i.e. k > 0, which
means A > 0), we see in figure 4 that the envelope
of all the hyperbolic trajectories is also a hyperbola
with vertex at the starting point and focus at the
force centre. As the point of relgase moves towards
infinity, i.e, R — oo, this hyperbola degenerates into
the familiar parabolic caustic (Warner and Huttar
1991, Adolph ef 2/ 1972) which one encounters when
discussing the Rutherford scattering problem

1 "’”“(1 —cosf). (L)
Iy

For future reference, we mention that in the case of a
repulsive potential (i.e. £ > 0) equation (10) can be
written in the following way

R
;;_s'mz eR(ooseR—cosﬂ), (12)
with
cosOp = =4 (13)

e

1+
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Figure 4. Family of arbits for the situation of tigure 1 with

A= 2k/mv§R = % The excluded region is limited by a hyperboloid
of revolution with vertex at the starting point P and {ocus at the
force centre Q.

Figure 5. Families of orbits for particles having identical initial
velocity, but varying emission angle o for the cases; (a)
A=2kfmiiR = ~Zand (b) A =2k/muiR =2

(a) A=-2/3

(b) A=2/3
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This angle Og, which can also be expressed in terms
of the initial and final velocities vy and v, as

Qg = 2arccos (ﬂ),

14
= (14
defines the aperture of the shadow zone. Namely, the
possible deflections of the particle lie within the range
of angles from G 1o

3. Dispersion funclion

Let us now consider the case of particles ejected from
the release point P in all directions, with initial
velocity vwy. We will consider the case of open trajec-
tories, i.e. A > ~1, Figure 5 shows two families of
such trajectories for (2) an attractive potential
{4 =-2/3) and (b) a repulsive potential (4 = 2/3).
In the limit » — oo, equation (5) provides the final
deflection angle (see figure 2) © = lim, ., , £ in terms
of the injtial emission angle o. It reads

sin® o

cos@ = -1+ 15
1+44 - T+ Acosa’ (15)
or, in terms of the final velocity v,
2 — 2
05O = 1 — (vgcos o — ;) (16)

V¢ + vE — Qg COSC

Since the potential is symmetrical around an axis
through the starting point and the force centre,
positive and negative values of G are physically indis-
tinguishable. Therefore we adopt the standard tech-
nique of restricting the deflection angle © to the
range 0 < © < w, which removes the indeterminacy
in equation (16).

Figure 6 shows the dispersion function ©(a) for
different values of the parameter A = 2k/miR =
(to/1)* — 1. For a very weak potential (ie. for a
small value of |[A]} the trajectories are almost
straight lines and © = a, except when the particle is
emitted towards the force centre within a cone with
aperture Ac of the order of | 4|. This observation
is valid for both an attractive and a repulsive poten-
tial. In the limiting case of 4 = —], we have para-
bolic orbits and @ = |7 — 2a|. On the other hand,
for a very strong repulsive potential, i.e. 4 — o0,
we have © = «. This means that all the particles are
backscattered into a cone with aperture A of the
order of | 4|72,

4. Effective cross section

We see in figure 6 that the relation between @ and o
I8 not one-to-one, namely there are two different
initial emission angles @, which define trajectories
with the same deflection angle @. Starting from

i
J A=-0.02
2
5
-0.98
® o ,
A=100
IL: 4
2 0.
002
0 3
0 x ™
2
o

Figure 6. Dispersion function @{a), as given by equation
(15}, for different values of the parameter A = 2k,’mv§R.

equation (16) we find
2ugcos ey = Ul +cosB)

£ /v2 (1 —cos O) - 2(x, ~ v3) (1 - cos ©).
(17)

Now let us consider not the trajectory of a single
particle but the scarrering of a spherically outgoing
beam of identical particles flying in all directions
from the point of release. Let [ be the number of
these particles emitted per unit time and solid angle
from the starting point O. Since the relation between
o and @ is not one-to-one, the flux 2xf, d(cos @) of
particles scattered through angles between © and
O +d© is made up of two different contributions
from particles whose initial emission angles are
around o, (9) and o_(8), ie.

2nl.d(cosf) =2nlyd(cos o, ) +2rlyd(cos ). (18)
We define an effective cross section o(8) as the ratio
_ Lo [d{cosa)| | |d({cose)

o(@) = Iy ld(cos8)|s, |d{cos8)s_ (19)

This definition is operationally equivalent to the stan-
dard one for the scattering of a beam of particles by a
force centre (Landau and Lifshitz 1976),

do d
a2

|
except for the fact that here the trajectories are

i
20
d(cos Q) (20)
parametrized not by an impact parameter p bt by
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Figure 7. Relation a{@) between the emission and deflection angles, as
given by equation (17) and the corresponding effective cross section o(8} in

equation (22) for the cases A =

an initial emission angle ¢ which makes our ¢(8) a
dimensionless quantity. Actually, the differential
cross section (20) can be easily related to our defini-
tion (22) in the limit R — oo, as is shown in the
appendix.

By differentiating equation {17} with respect to
cos @, the following expressions for both contribu-
tions to the effective cross section (19) are obtained:

_ ld(cos )
7(0) = d(cos©)
2 v — ol cos® o
Yo \/211 (1=cos®) ~ylsin’@

(21}

These expressions are meaningless when the square
root becomes imaginary. However, it can be seen
that this situation only arises in the repulsive
case (k> 0), whenever & < 2arccos{vy/t,). These
angles correspond to the shadow region where there
are no scattered particles. Therefore, the effective
cross section can be written as

o{B) = (8) +a(8)
1 v — 1% cos©
Yo \/2u§(l -cos@) — vl sin? O

x H{(v§ — v c0s8) = v — ] (22)

2 =2
uaandAda.

with H(x) being the Heaviside step function, i.e.
H{x)=1for x>0, and H{x) =0 for x < 0.

On integrating over all angles, we find the fotaf
cross section

or = 271'J: a(8)sin®de = 4x. (23)

As expected, it represents the solid angle into which
the particle has to be emitted in order to be scattered.

In figure 7 we show the relation ¢(8) between the
emission and deflection angles, as given by eguation
{17), and the corresponding effective cross section
o{@) for the cases of an attractive potent:al such
that 4 = —g, and a repulsive one with 4 = = There
we can 3¢e that the cross section o(©} dwercrcs at
© =0 and O = 2arccos{yy 1), respectivcly. The
first case, which corresponds to the so-called for-
ward glory scattering, will be analysed in section 7,
In the second case, the angle @p defined in equation
(14), gives the aperture of the excluded region into
which none of the hyperbolic orbits penetrates. As
will be shown in the following section, this diver-
gence represents g rainbow scattering effect,

5. Rainbow efiect

In the previous section we have found that the effec-
tive cross section (22) diverges at an angle @ =
2arccos(vp/%.) When the potential is repulsive, ie.
& > 0. The cause of this divergence lies in the fact
that, as the emission angle & is varied from 0 to «,



208 | Samengo and R O Barrachina

the deflection angle © diminishes from 7 to a mini-
mum value Op, and afterwards increases again. The
effective cross section o(®), being proportional to
(d©/de)"!, becomes infinite at precisely this mini-
mum angle By. As is shown below, this phenom-
enon is geometrically analogous to what happens to
a beam of light rays scattered by a water droplet,
leading to the formation of an optical rainbow.
Hence, this kind of divergence in a classical cross
section is known as rainbow scattering (Ford and
Wheeler 1959),

The rainbow in the sky was one of the first physical
phenomena to be studied scientifically. The refer-
ences Nussenzveig (1977), Boyer (1959) and Green-
ler (1980) are warmly recommended for the reader
interested in the historical development of this sub-
ject. The first satisfactory explanation for the rain-
bow scattering of sunlight by water droplets in the
atmosphere was given by René Descartes in a treatise
published in 1637. He discovered that a light ray
which, upon entering a droplet of water, suffers one
internal reflection, emerges with a deflection angle
© which shows an extremum @p as a function of
its impact parameter p with respect to the centre of
the drop. As the intensity is proportional to
(d8/dp)™!, this extremum gives rise to a singularity
in the intensity, producing a clear bow in the sky.
The colours of the rainbow were explained thirty
years later by Newton in his prism experiment. Each
colour has a different index of refraction by water
and, therefore, a slightly different rainbow angle.

In atomic scattering, singularities in the classical
cross section were first predicted by Firsov in 1953
(Firsov 1953) and independently by Manson in
1957 (Manson 1957). The analogy between these
singularities and the optical rainbow was pointed
out by Ford and Wheeler in 1959 (Ford and Wheeler
1959}, Since these early papers and the first observa-
tion by Beck (Beck er al 1979), the rainbow effect has
been widely observed in atomic collisions (Kleyn
1987). These atomic rainbows are again due to the
fact that, whenever the dispersion relation ©{p)
shows an extremum, there is a singularity in the scat-
tering cross section (20) of the form (McDowell and
Coleman 1970)

do 1
©% e-on

In a quantum mechanical or semiclassical approach,
this classical singularity becomes a maximum at
smaller scattering angles. Furthermore, interference
effects ocecur in the form of supernumerary rainbows
(Ford and Wheeler 1959},

In their paper of 1955, Ford and Wheeler (Ford
and Wheeler 1959} also discussed the possibility of
observing rainbow phenomena in nuclear physics.
A structureless fall-off observed in the angular distri-
butions of some nucleus—nucleus elastic scattering
experiments was interpreted as the fingerprint of a

(24)

‘nuclear rajnbow’ effect (DeVris et af 1977). How-
ever, since the probability for reactive processes is
generally considerable, it was not clear whether this
fall-off was indeed associated with the dark side of
a rainbow or due to absorption. Actually, it has been
pointed out (McVoy and Satchler 1984) that the use
of the ‘rainbow’ terminology, natural as it was in
atomic physics, is isappropriate to describe much
of the above experiments, except for those referred
to the seattering of light ions at sufficiently high ener-
gies (Put and Paans 1977).

Let us note that the basic idea underlying the rain-
bow effect is that of a singnlarity in the Jacobian
relating the initial and final parameters of a scatter-
ing event. Actually, rainbow phenomena have been
identified in different scattering events other than
the angular defiection by a central potential. For
instance, when a molecule is scattered by a surface,
rotational modes I are expected to be excited,
except when the internuclear axis of the moiecule is
parallel or normal to the surface. Thus, the excita-
tion probability as a function of the initial orienta-
tion @ of the molecule will exhibit at least one
extremum, i.e. 8L/8¢ = 0. This effect is called rota-
tional rainbow (Kleyn 1987). Similar rotational rain-
bows have also been reported in atom-molecule
collisions (Beck er of 1979). This concept of a rain-
bow effect is also applicable in surface scattering
and in a wealth of other scattering situations as the
so-called orientational, multiple collision and vibra-
tionally induced rainbows (Kleyn 1987).

After this succinct review of rainbow scattering, let
us now analyse our effective cross section (22) for the
case of a repulsive potential, Since vy < 1, the cross
section is zero for @ < ©y. Therefore, we see that our
result shows a zone of darkness. This is also encoun-
tered in the optical rainbow: the sky shows a dark
band between the primary and secondary light rain-
bows, called Alexander's dark band. The explanation
is identical in both cases, i.e. there is no contribution
to the intensity in this zone because that would rep-
resent an angle of defiection smaller than Gg, which
is itself the angle of minimum deviation. Further-
more, we sec in equation (22) that, as for the case
of the rainbow scattering of sunlight by water drop-
lets, the effective cross section ¢(8), which is propor-
tional to {d8/da)”!, diverges at this angle Sg.
Actualiy, for © close to Bp, the cross section behaves
like

@) ~ JJtanog I
NE = 2cosag B - O

Regarding these similarities we adopt the common
practice (Ford and Wheeler 1959) of itaking over
the language of optics and speak of a rainbow scatter-
ing effect.

Usually, rainbows are due to a balance of counter-
acting forces. This means that they are met in the
case of potentials which are repulsive in one part of
space and attractive in some other, This condition

H© -8g). (25)
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is necessary if the scattering is such that the particles
come from infinity. There is an extremal trajectory
for which the angular deflection due to one force is
not vet strongly affected by the other. At this rain-
bow trajectory, the cross section diverges. In our
case, the same effect is achieved by only one force.
The difference lies in the fact that our initial distribu-
tion is not a parallel beam, but a spherically outgoing
flux.

6. Forward glory effect

The so-called forward glory effect accurs in classical
scattering processes whenever the dispersion func-
tion ©(p) passes smoothly through 0 as a function
of the impact parameter p (Ford and Wheeler
1958}, The cross section (20} diverges since sin &
vanishes while p and d8/dp remain finite. In our
case, we see in figure 7 and equation (22) that a simi-
lar divergence of #(©) occurs at © = 0. The explana-
tion of this divergence is identical, except for the fact
that the role of the impact parameter p is plaved by
the initial emission angle a.

From equation (17) we see that the deflection angle
9 = 0 corresponds to the so-called glory trajectory
characterized by an initial emission angle ag =
arccos(vy, /vy ). For small values of ©, the cross sec-
tion behaves as

sin ¢
a(©) = eG.

(26)

Physically, this divergence occurs since the attractive
potential focuses those trajectories with initial emis-
sion angles & around ag into the forward direction.
In this context, the term Coulomb focusing has been
recently used to describe an effect of this kind
observed in atomic scattering experiments (Swenson
et af 1991), Let us note, however, that neither this
glory effect, nor the rainbow scattering described in
the previous section, are exclusive of a Coulomb
interaction, Actually both effects can equally occur
with practically any other central potential, pro-
vided the scattered particles emerge from a point
source, Hence, glory scattering seems to be a
much more adequate name for describing this
phenomenon,

In the scattering of a beam of particles by a force
centre, this forward glory divergence, if present, is
usually masked by the contribution from large
impact parameters. This masking effect is obviously
absent in our case, where there are no other trajec-
tories which end up in the forward direction, except
for the glory trajectory.

It is clear that a similar divergence of the scattering
cross section (20), called backward glory, could even-
tually occur when @ = m. In the scattering of a beam
of particles by a force centre, this backward glory
divergence is much more easily observed than the
corresponding effect in the forward direction, since

Jor7

it is not usually masked by other spurious contribu-
tions. In our case, however, no backward glory diver-
gence occurs, since the initial solid angle 2wd{cos )
in (19) vanishes together with 2md(cos @) when © = .
Therefore, the effective cross section o(8) remains
finite in the backward direction. It is the similarity
of the backward glory phenomenon with the optical
glory which prompted Ford and Wheeler to coin
the term ‘glory scattering’, even though the corre-
spondence between both mechanisms is not as clear
as for the rainbow phenomenon (Bryant and Jarmie
1974, Gillis et af 1982).

This forward glory phenomenon has recently been
reported (Swenson et ol 1991) in the decay of an
autoionizing state formed by the impact of a slow
charged ion. The spectral line shape of the emitted
electron is affected by the post-coilision interaction
with the Coulomb field of the outgoing projectile.
The peak is not only broadened and shifted, but also
a sharp enhancement of the profile in the direction of
the receding ion is observed. Regarding the ideas
developed in this paper, this effect can be explained
as a forward glory effect. A quantum description
(Barrachina and Macek 1989) leads to a maximum
in the forward direction, instead of the glory diver-
gence. In addition, an interference structure is
predicted. These characteristics of the angular beha-
viour of the cross section have been observed
(Swenson er a/ 1989) in a 10keV He™ — He colli-
sion. A semiclassical model (Swenson er al 1989) suc-
cessfully describes the phenomenon as being due to
the interference of the two classical trajectories
which are emifted with different emission angles but
end up in the same direction @ (see figure 7 and equa-
tion (17)). These two orbits go around opposite sides
of the outgoing icn.

As a corollary of the ideas presented in this paper,
it can be foreseen that a very striking effect might be
likely to occur if the autoionizing process were
induced by a negatively charged projectile. As a
result of a rainbow phenomenon, a deep depletion
of electron emission in the forward direction and a
sharp enhancement at a certain characteristic emis-
sion angle ©p have to be expected. A quantum
description would also show an interference effect
which could be related to the supernumerary arcs aris-
ing from trajectories that have initial emission angles
o on each side of the rainbow value ay. Recently,
apnomalous oscillations in the binary peak of the elec-
trons emitted in 1 MeV amu-1U+2! + He collisions
have also been associated with the phenomena of
rainbow and forward glory (Reinhold er al 1991).
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Appendix

It is easy to show that, in the limit R — oo, the dis-
persion relation (15) yields the corresponding rela-
tion for Rutherford scattering. Te do so, we have
to define an impact parameter p = Ritang, replace
it in equation (15), and take the limit R — oo. This
leads to

2 K 2
P =;n2v§OCOt (6/2),

(27)

as expected for the scatiering of charged particles ina
Coulomb field (Landau and Lifshitz 1976).

Furthermore, it is not difficult to relate the differ-
ential cross section (20) to our definition {22). First,
let us note that & = arctan(p/R) and only those par-
ticles emitted into a narrow forward cone towards the
force centre, ie. the o, (©) contribution to the effec-
tive cross section, have to be considered. Therefore,
we obtain in the limit R — oo

o _|_rdp
dQ " |d(cos@)
- | _edp |[d{cosa,}|
Rr=o|dfcos e, )| | d{cos©) |
RZ
= Jim ——a.(6), (28)

and, since cosa — 1 when R — oo, we see that our
effective cross section (19) vields the corresponding
standard definition equation (20)

2
do (kY __ L1 __ (30)
dan Yk, sin*(®/2)
which is the Rutherford differential cross section for

the scattering of a particle by a Coulomb force
centre,
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