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Rainbow and glory effects in the autoionization of atoms
excited by the impact of heavy ions
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Abstract. When the autoionizing state formed by the impact of a slow positively charged ion
decays, the line profile of the emitted electron is affected by the post-collision interaction with
the Coulomb field of the outgoing projectile, displaying a strong enhancement in the forward
direction. On the other hand, when the autoionization process is induced by a negatively charged
projectile, we demonstrate that the electron spectrum displays a depletion in the forward direction
and a sharp enhancement at a certain intermediate angle. We show that these structures can
be interpreted as forward glory and rainbow effects, respectively. We discuss the similarities
and discrepancies between a continuum-distorted wave (CDW) approximation and a classical
description of these phenomena.

1. Introduction

When an atom is excited to an autoionizing state, there is a spontaneous emission of electrons
with a sharply defined energy and a characteristic angular distribution. However, if the
autoionizing state is formed by the impact of a slow charged ion, the spectral line shape
of the emitted electron is strongly affected by the post-collision interaction (PCI) with the
Coulomb field of the outgoing projectile. This effect was first observed and explained
on classical grounds by Barker and Berry (1966), who showed that for positively charged
projectiles, the energy spectrum is broadened and shifted towards lower energies. A quantum
model was developed by Devdarianiet al (1977), assuming that the continuum state of the
emitted electron is not affected by the projectile. The next step was given by van der
Straten and Morgenstern (1986) by including a semiclassical asymptotic distortion of the
electronic wavefunction due to the projectile. These analyses concluded that the presence
of the charged projectile and its state of motion distort the energy distribution of the emitted
electrons.

Nevertheless, the receding projectile can produce even another effect on the electronic
distribution which is not predicted by the former models. When the emitted electron moves
at a velocity comparable to that of the positively charged projectile, the line profile is not
only broadened and shifted, but there is also a sharp enhancement in the direction of the
receding ion. This effect, predicted by Dahlet al (1976), was first observed by Swensonet
al (1989) in He+ → He collisions. They explained it by modelling the classical deflection
of the emitted electron due to its Coulomb interaction with the projectile. The vanishing

† Also a member of the Consejo Nacional de Investigaciones Cientı́ficas y T́ecnicas, Argentina.
‡ To whom correspondence should be addressed. E-mail address: barra@cab.cnea.edu.ar
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of the element of solid angle at zero degree leads to a singularity in the forward direction;
an effect which has been namedCoulomb focusing(Swensonet al 1989). Including
the projectile in the post-collision electron state by means of a continuum distorted wave
(CDW) approximation, Barrachina and Macek (1989) derived an analytical expression for
the electronic emission amplitude, which shows a similar sharp dependence on the emission
angle. Kuchiev and Sheinerman (1988) used an alternative approximation for the final
state which leads to results which are equivalent to those of the CDW model for heavy-ion
collisions.

The aim of the present work is to focus attention on the similarities and discrepancies
between the aforementioned quantum-mechanical and classical descriptions of these
phenomena. The CDW model represents a fully quantum-mechanical approach. However,
it is well known that many problems show features that can be described in terms of classical
or semiclassical concepts (Ford and Wheeler 1959). In the present case, for instance, the
enhancement of the emission profile in the forward direction can be interpreted in terms of a
phenomenon well known within the classical description of potential scattering, namely, the
forward glory effect. The only difference with the present effect is that now the classical
trajectory of the electron starts at a certain distance from the force centre and is characterized
by the initial emission angle instead of an impact parameter. Similarly to potential scattering,
the forward glory effect arises since the element of solid angle for the initial emission angle
remains finite while that for the final angle vanishes in the forward direction.

These similarities between the quantal and classical descriptions are even more striking
in the case that the autoionizing state is induced by the collision with a negatively charged
projectile. In this paper we show that the CDW model predicts a deep depletion of electron
emission in the forward direction and an enhancement at a certain characteristic emission
angle. In a classical description, the final angle passes through a minimum as the emission
angle increases. The intensity, being proportional to the inverse of the corresponding
derivative, diverges. In this case we can again take over the language of optics and assimilate
this effect to the classicalrainbow phenomenon.

In the following two sections we review different classical and quantum-mechanical
models of autoionization in ion–atom collisions. In section 4 we define an effective cross
section which describes the way the projectile influences the angular behaviour of the
emitted electrons. In section 5 we show that this effective cross section presents a sharp
enhancement in the forward direction when the charge of the projectile is positive. This
effect occurs both in the quantum-mechanical description and in its classical approximation,
and can be attributed to a forward glory effect. On the other hand, when the projectile is
negatively charged, we are in the presence of a rainbow effect, as is shown in section 6.

2. Quantum-mechanical theories

We begin with a review of previous quantum-mechanical models for the distribution of
ejected electrons in an autoionization process induced by collision. We present them in a
unified description, although the original derivations were done independently.

We consider a collision of an atomic ion of chargeZP and velocityvP with a neutral
atom which, after being excited to an autoionizing state, decays by ejecting an electron with
velocity v. The emitted electron travels in the two-centre Coulomb field of the ionized
target and the receding projectile. The continuum state of the electron may be decomposed
in the following way

9v = Dv(r, R)9−
v (r),
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where9−
v (r) is the continuum wavefunction of the electron moving with asymptotic velocity

v in the field of the residual target ion alone, andDv(r, R) incorporates the distortion due
to the electron–projectile interaction.R is the relative projectile–target coordinate. As
was shown by Barrachina and Macek (1989) in a first order perturbation treatment, the
autoionization transition amplitude may be written (in atomic units)

A = −iA0

∫ ∞

0
D∗

v(0, vP t)t iZP /vP exp[i(v2/2 − v2
0/2 + i0/2)t ] dt, (1)

where E0 = v2
0/2 and 1/0 are the resonant energy and characteristic lifetime of the

autoionizing state of the target. The amplitudeA0 accounts for the excitation to the
autoionizing state produced by the projectile–target collision and the natural decay which
would take place if the projectile had no influence on the ejected electrons. Its angular
behaviour resembles the symmetry of the autoionizing state. On the other hand, the integral
expression describes the PCI between the projectile and the emitted electron. From the
squared modulus of equation (1), the autonization cross section may be calculated. The
various electronic distributions obtained to date lie ultimately on different approximations
of the distortion factorDv, although the original derivations followed different lines of
reasoning.

The first approach was made by Devdarianiet al (1977), who neglected the effect of the
projectile on the electronic wavefunction by makingDv = 1. This approximation implies
that the projectile does modify the energy but not the trajectory of the emitted electron. The
result is

ADOS = −iA0

∫ ∞

0
t iZP /vP exp(i(v2/2 − v2

0/2 + i0/2)t) dt

= A0
0(1 + iZP /vP ) exp(−πZP /2vP )

(v2/2 − v2
0/2 + i0/2)1+iZP /vP

. (2)

Therefore, the autoionization double differential cross section (DDCS) reads

dσ

dE d�

∣∣∣∣
DOS

= σ0

4π0
g

(
ν,

E − E0

0/2

)
, (3)

whereE = v2/2, ν = ZP /vP and σ0 is an inherent cross section which does not include
the PCI. The functiong depends on dimensionless parameters, and reads

g(ν, y) = ν

sinh(πν)

2

1 + y2
exp(−2ν arctany). (4)

As shown in figure 1, this function has a maximum aty = −ν and verifies

g(ν, y) = g(−ν, −y).

For ν → 0 the functiong approaches a Lorentzian shape

g(ν, y) ≈ 2/π

1 + y2
,

which means that if the projectile exherts no influence upon the emitted electron, the velocity
spectrum approaches the natural linewidth distribution. In the opposite limit|ν| � 1, and
since the maximum ofg(ν, y) occurs aty = −ν, we take|y| � 1, i.e. |E − E0| � 0/2.
We therefore approximate 1+ y2 ≈ y2 and arctany ≈ sg(y)π/2 − 1/y, where we have
defined the sign function sg(y) = 1 for y > 0 and−1 for y < 0. Thus

g(ν, y) ≈ 1

2ν

(
2ν

y

)2

e2ν/y exp(−πν sg(y))

sinh(πν)
,
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Figure 1. Electron emission intensity in the autoionization of atoms excited by the impact of
heavy ions. The expression of Devdarianiet al (1977), equation (3), is shown for different
values of the dimensionless parameterν = ZP /vP .

which, for |ν| � 1, reduces to

g(ν, y) ≈ 1

|ν|f (y/2ν),

with

f (x) = 1

x2
e1/x2(−x),

where2(t) is the Heaviside step function. In this way, in the classical limit, the emission
cross section, equation (3), reduces to

dσ

dE d�

∣∣∣∣
BB

= σ0

4π0

1

|ν|f
(

E − E0

ν0

)
, (5)

which is the expression obtained by Barker and Berry (1966) on phenomenological
considerations. The functionf (x) has a maximum atx = − 1

2 and a full width at half
maximum of 1x ≈ 1.07, describing a peak of the autoionization cross section with its
maximum at an energyE = E0/2 − ZP 0/2vP and a pronounced tail towards lower or
higher energies, depending on the sign of the projectile’s charge.

We therefore see that the model of Devdarianiet al (1977), which represents the most
crude approximation of the distortion factor (Dv = 1) leads to an electronic distribution that
is shifted fromv = v0 and has the correct behaviour in the limitsν → 0 and|ν| → +∞.
However, this model is not consistent with the fact that, due to its infinite range, the
electron–projectile Coulomb interaction does not vanish at large distances. Therefore, in
the lowest-order approximation a logarithmic-phase distortion must be kept, leading to an
eikonal (EI) description of the electron–projectile distortion factor

Dv(r, R) ≈ (v′|r − R| + v′ · (r − R))iν ′
,
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with v′ = v − vP the relative electron–projectile velocity, andν ′ = ZP /v′. Substituting
into equation (1), we obtain

AEA = −iA0

∫ ∞

0
[(v′vP − v′ · vP )t ]−iν ′

t iν exp[i(v2/2 − v2
0/2 + i0/2)t ] dt

= A0

(v′vP − v′ · vP )iν ′
0[1 + i(ν − ν ′)] exp[−π(ν − ν ′)/2]

(v2/2 − v2
0/2 + i0/2)−1−i(ν−ν ′)

. (6)

Therefore, the autoionization DDCS reads

dσ

dE d�

∣∣∣∣
EA

= σ0

4π0
g

(
ν − ν ′,

E − E0

0/2

)
, (7)

where the functiong(ν, y) is given by equation (4). This electronic distribution is the same
as the one obtained by van der Straten and Morgenstern (1986) and differs from that of
Devdarianiet al (1977) only by a modified projectile charge

Z∗
P = ZP

(
1 − vP

v′
)

.

The discrepancies between both theories are negligible whenv′ is much larger thanvP .
However, when|v − vP | < vP the modified chargeZ∗

P changes its sign. In the case of a
positively charged projectile, this leads to a high energy tail in the energy spectrum of the
emitted electron, instead of the usual shift to lower energies.

Except eventually for the factorσ0, the transition rate (7) depends on the emission
angle only through the modified projectile chargeZ∗

P . Nevertheless, as was first observed
by Swensonet al (1989) in He+ + He collisions, the interaction with the projectile can
also alter the angular distribution of the emitted electrons. In order to predict this, the
distortion factorDv must give a better description of the electron–projectile interaction.
This was explicitly incorporated by Barrachina and Macek (1989) by means of a CDW
approximation (Cheshire 1964, Belkicet al 1979) of the final state of the electron. They
wrote

Dv(r, R) = 0(1 + iν ′) exp(πν ′/2) 1F1[−iν ′, 1; −i(v′|r − R| + v′ · (r − R)).

With this approximation, the transition amplitude in equation (1) can be analytically
evaluated

ACDW = −iA0

∫ ∞

0
D∗

v(0, vP t)t iν exp(i(v2/2 − v2
0/2 + i0/2)t) dt

= ADOS0(1 − iν ′)eπν ′/2
2F1

(
iν ′; 1 + iν; 1; − v′vP − v′ · vP

v2/2 − v2
0/2 + i0/2

)
(8)

This result includes the amplitudeADOS , as given by equation (2), and incorporates a
dependence on the emission angle that is missed in previous theories. In particular this
amplitude reduces to that of Devdarianiet al (1977) in certain regions of the electronic
velocity space (Barrachina and Macek 1989). Namely, forv′vP − v′ · vP � 0/2 we obtain

ACDW ≈ 0(1 − iν ′)eπν ′/2ADOS

which differs from the amplitudeADOS calculated by Devdarianiet al (1977) in the
normalization factor of the electron–projectile continuum state. In the limitv′ � ZP

this Coulomb factor approaches unity and the CDW amplitude reduces toADOS . On the
other hand, forv′vP − v′ · vP � 0/2 we recover the semiclassical amplitude as obtained
by van der Straten and Morgenstern (1986).

From equation (8), the autoionization cross section is obtained, showing a dependence
on the emission angle. In particular, for a positively charged projectile,ZP > 0, it predicts
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(a)

(b)

Figure 2. CDW approximation for the electron emission intensity in the autoionization of
helium excited to a(2s2) 1S state by the impact of (a) a proton or (b) an antiproton of velocity
vP = 0.1 au.

a sharp enhancement in the forward direction, as shown in figure 2(a). This behaviour of
the intensity profile was first observed by Swensonet al (1989) in He+ → He collisions,
who named itCoulomb focusing. In the next section we review a classical explanation
of this effect. Furthermore, we show that the enhancement of the emission profile in the
forward direction can be interpreted in terms of a phenomenon well known within the
classical description of potential scattering, theforward glory effect. On the other hand,
for a negatively charged projectile the autoionization cross section shows an enhancement
at a certain characteristic angle and drops sharply in the forward direction, as shown in
figure 2(b). The classical explanation for this effect israinbow scattering, as we show in
section 6.
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3. Classical trajectory model

As it was pointed out by Dahlet al (1976), one important aspect of the autoionization process
which is missing from Barker and Berry’s phenomenological model refers to the deflection
of the ejected electron in the Coulomb field of the projectile. This means that the presence
of the chargeZP induces a non-trivial transformation between the electronic velocityv0 at
the moment of emission and the velocityv after being scattered by the projectile. In this
case, some kind of dependence on the emission angle is likely to be expected. This post-
collision distortion of the electron’s trajectory was explicitly considered by van der Straten
and Morgenstern (1986). However, a small deflection approximation prevented them from
obtaining any significant dependence of the autoionization amplitude on the emission angle.
Finally Swensonet al (1989) developed a classical generalization of Barker and Berry’s
model which incorporates this angle dependence by modelling the deflection of the ejected
electron in the field of a positively charged projectile. In a first-order approximation, their
model assumes that the electron moves in the Coulomb potential of the projectile alone.
Therefore, the angle dependence of the final velocity distribution is shown to be dominated
by the Jacobian∂(v′

0)/∂(v′) of the transformationv′
0 → v′ between the initial and final

velocities measured in the reference frame of the projectile. Using polar coordinates (see
figure 3) and applying the energy conservationv′2/2 = v′2

0/2 − ZP /R, the Jacobian reads

∂(v′
0)

∂(v′)
= v′

0

v′
sinα

sinθ

∣∣∣∣dα

dθ

∣∣∣∣ .
The factor sinα/ sinθ |dα/dθ | describes the deflection of the emitted electron in the Coulomb
field of the projectile. As we shall see, this term gives rise to a strong angular dependence
of the emission probability which is missed in Barker and Berry’s model. Actually, for a
positively charged projectile and wheneverv > vP , this term leads to the appearence of a
singularity of dσ/dv in the forward direction.

Figure 3. In the projectile’s reference frame, an electron is ejected from the target T with
velocity v′

0 in a direction defined by the angleα, when the projectile P is at a distanceR from
the target. The polar coordinates of the electron arer andϑ . Its asymptotic velocityv′ makes
an angleθ with the polar axis.
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4. Classical effective cross section

In the previous section we have seen that the quantity

6CL(cosθ) = sinα

sinθ

∣∣∣∣dα

dθ

∣∣∣∣
with α andθ the projectile–frame emission angles before and after scattering, respectively,
describes the way the projectile influences the angular behaviour of the emitted electrons.
We shall call it theeffective cross section, and the subscriptCL stands forclassical. This
definition is operationally equivalent to the standard one for the scattering of a beam of
particles by a force centre (Landau and Lifshitz 1976)

σ(cosθ) =
∑

i

ρi

sinθ

∣∣∣∣dρi

dθ

∣∣∣∣ , (9)

except that here the trajectories are parametrized not by an impact parameterρ but by the
initial emission angleα which makes this6CL a dimensionless quantity.

In order to evaluate this effective cross section we need the transformationv′
0 → v′.

Let us consider an electron which is released with initial velocityv′
0 from a target T which,

at the time of emission, is located at a distanceR from the projectile P. In the projectile’s
reference frame, the initial velocityv′

0 makes an angleα with an axis through the target and
the projectile. Letr and ϑ be the plane polar coordinates of the electron measured from
the projectile P, as shown in figure 3. Neglecting its interaction with the residual target, the
electron moves in the Coulomb potential of the projectile alone (Swensonet al 1989). The
trajectory of the electron is given by (Laporte 1970, Samengo and Barrachina 1994)

R

r
sin2 α = −A

2
(1 + cosϑ) + sinα sin(ϑ − α) (10)

where the dimensionless parameter

A = −ZP /R

mv′2
0 /2

= v′2

v′2
0

− 1

represents the ratio between the potential and kinetic energies at the moment of emission.
We see that each particular orbit is fully characterized by this parameterA and the initial
emission angleα. In particular, the eccentricity reads

ε =
√

1 + 4(A + 1)

A2
sin2 α.

In the limit r → +∞ equation (10) provides the final deflection angleθ = limr→∞ ϑ in
terms of the emission angleα. It reads

cosθ = −1 + sin2 α

1 + 1
2A − √

1 + A cosα
. (11)

As shown in figure 4, this relation betweenθ andα is not one to one. There are two different
initial emission anglesα± which define trajectories with the same deflection angleθ . This
means that when calculating the emission rate, we have to sum up upon both branches, as
given by inverting the previous equation

2 cosα± = √
1 + A(1 + cosθ) ±

√
(1 + A)(1 − cosθ)2 − 2A(1 − cosθ). (12)
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Figure 4. The final angleθ as a function of the initial angleα, as given by equation (11), for
different values of the parameterA = −2ZP /mv′

0
2
R.

By differentiating these equations with respect to cosθ , the following expressions for the
effective cross sections are obtained

6±
CL(cosθ) =

∣∣∣∣d cosα±
d cosθ

∣∣∣∣
= 1

2

[
1 − (1 + A) cosθ

(2(1 − cosθ) − (1 + A) sin2 θ)1/2
∓ √

1 + A

]
. (13)

In figure 5 we show the relationα(θ) between the emission and deflection angles and the
corresponding effective cross sections for (a) a positively charged projectile withA = − 2

3

and (b) a negative one withA = 2
3. In both cases, we see that6±

CL presents a divergency.
For ZP > 0 it is at θ = 0 and corresponds to the so-calledforward glory effect(Ford
and Wheeler 1959). WhenZP < 0, we are in the presence of arainbow effect, and the
divergency occurs at a characteristic angleθR, which defines the aperture of a region in
space into which none of the hyperbolic orbits penetrates. We will now analyse these
phenomena separately.

5. Forward glory effect

The so calledforward glory effectoccurs in classical scattering processes whenever the
dispersion functionθ(ρ) passes smoothly through 0 as a function of the impact parameter
ρ (Ford and Wheeler 1959). The cross section, equation (9), diverges since sinθ vanishes
while ρ and dρ/dθ remain finite. In our case, we see in figure 5 and equation (13) that a
similar divergence of6CL occurs atθ = 0. The explanation of this divergence is the same,
except for the fact that the role of the impact parameterρ is played by the initial emission
angleα. In the scattering of a beam of particles by a force centre this effect, if present, is
usually masked by the contribution from large impact parameters. This masking effect is
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Figure 5. Dispersion relation between the emission angleα and the final angleθ , and the
corresponding effective cross sections for (a) a positively charged projectileA = − 2

3 and (b) a

negative oneA = 2
3 . (Note that, in order to associate the rainbow divergence with the derivative

in the dispersion function, the axesα andθ have been interchanged with respect to the previous
figure.) There are two emission anglesα± for eachθ . For ZP > 0 there is a forward glory
divergency, and forZP < 0 the effective cross section diverges atθR due to a rainbow effect.

obviously absent in our case, since the glory trajectory is the only one which ends up in the
forward direction.

From equation (12) we see that the deflection angleθ = 0 corresponds to a so-called
glory trajectory which is characterized by an initial emission angleαG = arccos

√
1 + A

shown in figure 5(a). For small values ofθ , the cross section behaves as

6±
CL ≈ sinαG

2|θ | . (14)

Physically, this divergency occurs because the attractive potential deflects those trajectories
with initial emission angles nearαG into the forward direction, where the solid angle
vanishes. Therefore, the angular density of trajectories is largely increased. This effect
has been namedCoulomb focusing(Swensonet al 1989). However, it is clear from the
previous analysis that the phenomenon is not exclusive of a Coulomb interaction, and can
equally happen with practically any other attractive potential. Furthermore, those electrons
emitted with initial emission angles smaller thanαG are not focused in the forward direction,
but end up in directions which encompass the full (0,π ) range. Hence,glory scattering
seems to be a much more adequate name for describing this effect.

Let us now investigate this effect from a quantum mechanical point of view. From
equation (8) we obtain the following expression for the autoionization DDCS

dσ

dE d�

∣∣∣∣
CDW

= 2πν ′

1 − expπν ′

∣∣∣∣ 2F1

(
iν ′; 1 + iν; 1; − v′vP − v′ · vP

E − E0 + i0/2

)∣∣∣∣2 dσ

dE d�

∣∣∣∣
DOS
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where dσ/dE d�|DOS is the autoionization cross section equation (3) obtained by Devdariani
et al (1977). The term accompanying dσ/dE d�|DOS accounts for the effect of the projectile
in the angular behaviour of the electrons. Its dependence on the parameters of the problem
is much more intricate than in the classical approach. In figure 2(a) we show its angular
behaviour for an attractive interaction between the electron and the projectile, i.e.ZP > 0.
We see that, while6CL in figure 5 is monotonic and presents a glory divergency in the
forward direction, the quantum-mechanical DDCS oscillates, and reaches a finite value at
zero degrees. Nevertheless, the global behaviour of both cross sections is similar. From
equation (5) it can be seen that the forward intensity is given by the normalization factor
of the Coulomb continuum wavefunction.

N(ν ′) = 2πν ′/(1 − exp(−2πν ′)). (15)

We see that this enhancement is more pronounced the greater the charge and the slower the
relative electron–projectile velocity. In the classical case, the forward divergency as given
by equation (14) shows a similar dependence.

It is clear that a similar divergence, calledbackward glory, could eventually occur in
the backward direction, however it is not observed. This fact seems to be at odds with what
happens in the scattering of a beam of particles by a force centre, where this backward glory
divergence is much more easily observed than its counterpart atθ = 0, since it is not masked
by other spurious contributions. In our case, however, no backward glory divergence occurs
since, whenθ = π , the initial solid angle 2π cosα in equation (13) vanishes together with
2π cosθ .

It was the similarity of the backward glory phenomenon with the optical glory which
prompted Ford and Wheeler (1959) to coin the termglory scattering(Bryant and Jarmie
1974), even though the correspondence between both mechanisms is not as clear as for the
rainbow phenomenon, as we shall see in the following section.

6. Rainbow effect

As a corollary of the ideas presented up to now, it can be foreseen that an interesting
effect is likely to occur if the autoionizing process is induced by a negatively charged
projectile. As a result of a rainbow phenomenon, a deep depletion of electron emission in
the forward direction and a sharp enhancement at a certain characteristic emission angle
θR have to be expected. We see in figure 2(b) that this is actually the case. Once again,
there are some similitudes and some differences between the classical and the quantum
mechanical descriptions. For instance, the rainbow divergency of the classical picture
becomes a maximum in the quantum-mechanical approach. Furthermore, the angle of this
maximum is slightly greater thanθR. For angles smaller thanθR, the classical cross section
is strictly zero, while the quantum-mechanical one shows a pronounced minimum.

In atomic scattering, singularities in the classical cross section were first predicted by
Firsov (1953) and independently by Manson (1957). By analogy with the corresponding
optical effect, this phenomenon was calledrainbow scatteringby Ford and Wheeler (1959).
Since these early papers and the first observation by Beck (1962), the rainbow effect has
been widely observed in atomic collisions (Kleyn 1987). These atomic rainbows are again
due to the fact that, whenever the dispersion relationθ(ρ) shows an extremum, there is a
singularity in the scattering cross section, equation (9), of the form

σ(cosθ) ∝ 1√|θ − θR| .
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In our case, the divergence of6CL for the case of a negatively charged projectile occurs at
an angle

θR = 2 arctan(
√

A). (16)

The cause of this divergence lies in the fact that, as the emission angleα is varied from 0 to
π , the deflection angleθ diminishes fromπ to a minimum valueθR, and thereafter increases
again. The effective cross section6CL(cosθ), being proportional to(dθ/dα)−1, becomes
infinite at precisely this minimum angleθR. For θ close toθR the classical effective cross
section behaves like

6±
CL ≈

√
tan(θR/2)

4 cos(θR/2)

1√
θ − θR

2(θ − θR).

This phenomenon is geometrically analogous to what happens to a beam of light rays
scattered by a water droplet, leading to the formation of an optical rainbow. Hence, this
kind of divergency is known asrainbow scattering(Ford and Wheeler 1959). Usually,
rainbows are due to a balance of counteracting forces. This means that they are met in the
case of potentials which are repulsive in one part of space and attractive in some other part.
This condition is necessary if the scattering is such that the particles come from infinity.
In our case, the same effect is achieved by only one force. The difference is that, instead
of having an initial distribution with the geometry of a parallel beam, we have an outgoing
flux diverging from one point.

The rainbow in the sky was one of the first physical phenomena to be studied
scientifically. The first explanation of the rainbow in the modern conception of science
was given by Reńe Descartes in 1637 (see the review paper by Nussenzveig (1977)). He
discovered that when a beam of light enters a water droplet and suffers one internal reflection
there is an extremum angleθR where the density of trajectories diverges, producing a clear
bow in the sky. The colours of the rainbow were explained thirty years later by Newton
in his prism experiment. Each colour has a different index of refraction by water and,
therefore, a slightly different rainbow angle. This picture gives rise to a divergency of the
light intensity at the rainbow angle and a dark zone (Alexander’s dark band) for smaller
angles. Taking into account the possibility of more than one internal reflection, higher-order
rainbows can be predicted. As a matter of fact, Alexander’s dark band is the dark stripe
between the first- and second-order rainbows. In figure 2(b) we see that a similardark
band is also observed in our effective cross section forθ < θR. Actually the Heaviside
step function in equation (13) vanishes forθ < θR, making the effective cross section zero
in this excluded region.

When the interaction between the projectile and the emitted electron increases, the
shadow zone becomes broader both in the classical and quantum-mechanical descriptions.
Regarding the forward intensity of the quantum mechanical cross section, we can still use
equation (15). As the exponential has now a positive argument, the forward intensity will
be smaller the greater is|ZP | and the smaller isv′. In any case, it is clear that the number
of particles emitted in the forward direction is no longer zero, as in the classical case.

This non-zero intensity inside Alexander’s dark band represents an important difference
between the quantum mechanical treatment and its classical approximation. Similarly, the
classical picture of the rainbow phenomenon, as given by Descartes and Newton, suffers
from this same inconsistency. A partial answer was given by Airy in 1838, when he
calculated the evolution of a wavefront inside a water droplet. Instead of a rainbow
divergency, he obtained a maximum located at a slightly greater angle with a continuous
transition to the dark band. The fact that Alexander’s dark band was no longer strictly
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dark was associated to a diffraction effect into the geometrical shadow. In our system, the
situation is completely analogous.

Another feature which could not be explained with the classical picture was the
interference phenomenon. Sometimes, several luminous arcs can be observed under the
principal rainbow. These arcs are calledsupernumerary arcs. Their explanation had to wait
until 1803, when Thomas Young gave an undulatory description of the rainbow. As shown
in figure 4, there are two distinct paths which end up in any given direction which can give
rise to constructive or destructive interference, depending on the observation angle. This
accounts for the intensity oscillations of the supernumerary arcs. In the same way, the CDW
description of the autoionization process incorporates oscillations which were not present in
the classical description. This interference phenomenon is also described by a semiclassical
model developed by Swensonet al (1991). The similarity between both descriptions relies
on the semiclassical concept of nearside and farside scattering (Samengo and Barrachina
1996), which was first used to describe elastic reactions of spin-zero nuclei (Fuller 1975).

7. Conclusions

We have considered an autoionization process induced by the collision of a charged heavy
ion with a neutral atom. We studied the post-collisional effects produced by the interaction
between the ejected electron and the outgoing projectile by defining an effective cross section
which gives the angular distribution of the emitted electrons. In a classical description, this
effective cross section diverges in the forward direction for a positively charged projectile.
This structure can be interpreted in terms of a forward glory mechanism. The same effect is
also observed in a quantum-mechanical CDW approach and with a similar global behaviour,
except for the fact that the divergency turns into a maximum and the cross section exhibits
angular oscillations which are not present in the classical picture. These similarities and
differences are not exclusive of this particular system, but are present whenever corpuscular
and undulatory formulations of a given phenomenon are compared.

On the other hand, we showed that if the charge of the projectile is negative, the
autoionization cross section exhibits a very interesting effect characterized by a deep
depletion of the forward electron emission and an enhancement at a certain intermediate
angle. By comparison with a classical description we were able to ascribe these effects to
a rainbow phenomenon. The explanation of both characteristics is similar to that of the
rainbow arc and Alexander’s dark band in the optical effect.
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