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Abstract
We study the formation of cusps in the double differential cross section for
ion–atom ionization collisions by means of a classical trajectory Monte Carlo
calculation. The use of an ‘importance sampling’ algorithm allows us to
improve the efficiency of the method. We show that the overall shape of
the cusp is decided during the collision stage, while its divergence builds up
asymptotically as the result of a two-body process, in complete accordance with
the general framework of the final state interaction theory.

1. Introduction

Our purpose in this paper is to elucidate, through numerical Monte Carlo simulations with
classical trajectories, some of the qualitative and quantitative aspects of cusp formation in ion–
atom ionization collisions. To focus the present discussion, we display in figure 1 the velocity
spectrum dσ/dv of the electrons emitted from H(1s) targets by the collision of 100 keV H+

projectiles. This spectrum is calculated by means of a classical trajectory Monte Carlo (CTMC)
algorithm, as explained in the following sections. Two characteristic cusp-shaped peaks are
clearly observed surrounding v = 0 and vP, where vP is the projectile velocity. The latter
cusp is the so-called ‘electron capture to the continuum’ (or ECC) peak. It was experimentally
discovered by Crooks and Rudd (1970) and theoretically explained by Macek (1970) more
than three decades ago. This cusp was immediately visualized as the result of a smooth
continuation across the ionization limit of capture into highly excited electron–projectile bound
states (Rudd and Macek 1972). In this sense, the characteristic 1/|v − vP| divergence of the
electron velocity distribution was ascribed to the fact that the corresponding discrete spectrum
for the electron–projectile system accumulates at zero energy. Thus, it is no wonder that any
classical description, by mimicking this bound spectrum by a continuum, would succeed in
describing the ECC divergence. In 1989 Reinhold and Olson explicitly showed that a CTMC
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Figure 1. CTMC calculation of the differential cross section dσ/dv for the ionization of H(1s)
targets by the collision of 100 keV H+ projectiles. The details of the algorithm are explained in
the text. v‖ and v⊥ are the components of the electron velocity v parallel and perpendicular to the
projectile velocity vP, respectively.

calculation does reproduce this cusp-shaped structure. However, it is important to point out
that this success should not be mistakenly taken as a demonstration of a supposedly classical
origin of this phenomenon. The classical description certainly works whenever the electron–
projectile interaction is of a Coulomb type (Ovchinnikov and Khrebtukov 1987, Schultz et al
1996) or even of a dipolar nature (Tökési et al 1997, Sarkadi et al 2000). But, whenever the
electron–projectile interaction decreases faster than a dipole potential at large distances, i.e.
r ′ 2 VPe(r

′) → 0, the energy spectrum does not accumulate at zero energy, and the cusp displays
a Lorentzian behaviour (Barrachina 1990, 1997) that cannot be reproduced by any classical
description (Fiol et al 2002). This is the case, for instance, for a neutral polarizable projectile.
The ECC cusp observed in coincidence with neutral He outcoming projectiles, first measured
by Köver et al in 1989, is an example of this situation (see also Báder et al (1997)). These
different behaviours provide additional evidence of the fact that cusp formation is essentially a
two-body process, as it was understood many years ago. However, some recent works seem to
suggest otherwise (e.g. Illescas et al (2002)). One of our goals is to demonstrate the two-body
nature of the cusp in great detail, employing the same theoretical tools used in those works.

If the role of the projectile and the residual target ion is switched, these same ideas apply
for the other 1/v diverging cusp observed at v = 0 in figure 1. The momentum transferred
from the projectiles to these so-called ‘soft-collision electrons’ is just enough to unbind them.
If the parallelism with the ECC cusp is maintained, it is possible to call them ‘electrons excited
to the continuum’ (EEC), and we shall keep this name, even though the ‘soft-electron’ (SE)
denomination has prevailed in the literature.

2. The classical trajectory Monte Carlo method

The CTMC method has been applied with great success for the description of intermediate
energy atomic collisions by different authors (Abrines and Percival 1966, Olson and Salop
1977, Bandarage and Parson 1990, Illescas et al 1998). In particular, it has been shown
to be an invaluable and very versatile tool for the study of ionization collisions. For the
purpose of this paper, it will suffice to analyse the simplest ion–atom collision, i.e. a typical
H+ + H(1s) → H+ + H+ + e− single ionization process. The calculation procedure is described
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in detail in a previous work (Fiol et al 2000), except that here we employ a somewhat different
impact parameter statistic, as explained below.

A flux of H+ ions of velocity vP impinges from infinity upon a target consisting of H(1s)
atoms. The initial conditions to describe the 1s electron orbiting around the nucleus are the
energy of the Kepler orbit (−0.5 au), its eccentricity, the three Euler angles fixing the orbital
plane and orientation in space, and the eccentric angle that defines the initial position of the
electron along this orbit. AfterN calculated trajectories, the ionization cross section differential
in the electron velocity v is approximated by the estimator

dσ

dv
= 2π

∑
b

b
δNi(b)

δv

(
dN

db

)−1

, (1)

where δNi is the number of occasions on which the energy criterion for ionization is fulfilled
and v ends within the range δv. The distribution dN/db of impact parameters in the incoming
beam verifies that∫ ∞

0

dN

db
db = N.

Usually, an incoming flux uniform in b2 up to an arbitrary maximum impact parameter bo has
been used in the literature with near exclusivity. In this case

dN

db
= 2N

b

b2
o

�(bo − b), (2)

where �(x) is the Heaviside step function, and (1) reduces to the standard formula

dσ

dv
= πb2

o

∑
b�bo

1

N

δNi(b)

δv
.

In the usual jargon of the Monte Carlo technique, this choice of dN/db reduces CTMC to
what is known as a ‘hit-or-miss’ method (Hammersley and Handscomb 1964, Rubinstein
1981). This is reputed to be the most inefficient Monte Carlo algorithm, whatever calculations
it is applied to (Hammersley and Handscomb 1964). In the case of CTMC, the arbitrariness
in the choice of bo and the dominance of large impact parameters, which are not prone to
ionization collisions, are two symptoms of this inefficiency. Some authors (see, for instance,
Lewartowski and Courbin (1992)) have employed a linear distribution

dN

db
= N

bo

�(bo − b), (3)

which leads to a weighted estimator

dσ

dv
= 2πbo

∑
b�bo

b

N

δNi(b)

δv
.

This choice of dN/db is more efficient than the crude ‘hit-or-miss’ algorithm, but still maintains
the arbitrariness of bo and a slightly moderated dominance of large impact parameters.

In contrast, in this paper we employ an ‘importance sampling’ method over the impact
parameter that is free of these two shortcomings. We start by choosing a distribution dN/db

with a shape similar to that obtained by means of a first crude simulation. Then, this refined
distribution is used to improve the efficiency of a second definitive simulation. This is shown
in figure 2, where the quadratic (2) and linear (3) distributions (with an arbitrary choice of
bo = 4 au) are compared with a sampling optimized for the calculation of total ionization
cross sections in 100 keV H+ + H(1s) collisions. Note that this simple variance reduction
technique favours the dominance of small impact parameters, leading to a dramatic increase
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Figure 2. The quadratic (2) (chain curve) and linear (3) (broken curve) distributions of impact
parameters (with an arbitrary choice of bo = 4 au) usually employed in CTMC calculations are
compared with an ‘importance sampling’ (full curve) optimized for the calculation of total ionization
cross sections in 100 keV H+ + H(1s) collisions.

in the efficiency of the calculation. For the ionization of hydrogen targets by the impact of
protons with a velocity of v = 2 au, the efficiency of the impact parameter distribution depicted
in figure 2 is more than three times larger than the ‘hit-or-miss’ algorithm with a quadratic
distribution (2). Redefining the sampling for each particular calculation, the efficiency can be
improved even further. In particular, we evaluate the estimator for dσ/dv by means of about
12 × 106 trajectories, but with a distribution optimized to achieve an efficiency equivalent to
a homogeneous plane (quadratic) distribution of 50 × 106 trajectories with bo = 4 au.

3. Classical description of cusp production

In their 1989 work, Reinhold and Olson explained the formation of the ECC cusp in CTMC
calculations in terms of the dominance of two mechanisms. The most important one was the
focusing of the electrons in the forward direction due to their interaction with the projectile in
the asymptotic regime. In this sense, they pointed out that, in order to decide the final ejection
angle of the ECC electrons, the integration of the canonical Hamilton equations has to be
continued during an extremely long time. Secondly, they also proposed another mechanism
where a fraction of the electrons that are captured to highly excited states may still be ionized
at large internuclear distances by the residual target nucleus. Furthermore, this integration had
to be carried out with high numerical precision so as not to ionize the electrons captured to
highly excited orbits due to numerical error. As an aftermath of this perception of the main
mechanisms for the ECC effect, different authors (see, for instance, Tökesi et al (1997), Sarkadi
et al (2000) and Illescas et al (2002)) have assumed that the formation of a cusp in atomic
collisions proceeds so slowly that, when it is evaluated by means of a CTMC calculation, it
is necessary to integrate the Hamilton equations up to very large internuclear distances of the
order of R ≈ 105 au or even larger.

Figure 3 depicts the origin of this idea in a plot similar to that employed by Reinhold and
Olson in 1989. Here we show the velocity distribution of the electrons that are detected in a
direction parallel to that of the projectile motion for a H+ + H ionization collision at an impact
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Figure 3. CTMC calculation of the differential cross section dσ/dv for a H+ + H ionization collision
at an impact energy of 100 keV. The velocity distribution of the emitted electrons is depicted in a
direction parallel to that of the projectile’s motion, when the integration of the Hamilton equations
is stopped at two different internuclear distances R = 300 and 30 000 au. Also the same 0◦ cut of
dσ/dv is shown for the limit R → ∞. The details of these calculations are explained in the text.

velocity of 2 au, when the integration of the Hamilton equations is stopped at two different
internuclear distances R = 300 and 30 000 au. This same calculation was also performed
keeping the interactions between the three particles ‘alive’ up to other internuclear distances of
100, 300, 1000, 3000, 10 000, 30 000 and 100 000 au. In order to have a clearcut representation
of both cusps, we have employed a resolution volume δv that goes to zero not only for v → 0, as
in a typical collision experiment (Meckbach et al 1981), but also for v′ → 0, with v′ = v−vP.
This condition is very severe on the CTMC algorithm, requiring a large amount of trajectories
to get reasonable statistics, but at the same time yields a similar and quantitatively comparable
description of both cusps. In particular, we used limv→0 δv/v3 = limv′→0 δv′/v′3 = R with
R of the order of 5 × 10−4 au.

As expected from Reinhold and Olson’s discussion, figure 3 clearly shows that no EEC or
ECC peaks are obtained if the integration is stopped at any intermediate internuclear distance.
The use of a good resolution and an electron emission exactly set to the forward and backward
directions show that this lack of cusp structures pervades even at internuclear distances as large
as R = 3 × 104 au. It is not shown in the figure, but similar ‘holes’ at the positions of the EEC
and ECC peaks, with a diameter of the order of 0.05 au, are still visible for R = 105 au. As
the integration proceeds, these holes around v = 0 and vP are filled up and the EEC and ECC
cusps are slowly formed.

In a quantum mechanical description of cusp formation, each peak is solely produced by
an enhancement factor given by the inverse square modulus of a two-body s-wave Jost function
(Barrachina 1997, Fiol et al 2001b). For the ECC process, for instance, this Jost function relates
the electron and the projectile alone. Thus, cusp formation is in essence a two-body (i.e. single-
centre) process, where the third particle is a mere spectator that at most can affect its overall
shape, but not its characteristic divergence. Being so, the projection of the electron trajectory
onto one-centre orbits would suffice to recover the cusp divergency in a CTMC calculation
(Schultz et al 1996). For instance, Reinhold et al (1992) employed this extrapolation technique
for the simulation of cusp electron emission in ion–solid collisions, where the electron was
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assumed to evolve in the Coulomb field of the projectile alone after exiting the solid surface.
Furthermore, Tökesi et al (1994) justified its application for the study of the electron loss to
the continuum (ELC) cusp in H + H collisions in view that the dipole-type electron–target
interaction can be neglected at large distances. However, even nowadays authors using CTMC
to calculate the ECC cusps in ion–atom collisions let the program proceed up to an internuclear
distance R of the order of 105 au or larger. The associated computing effort involved in the
use of such large values of R can only be explained if some relevant process is assumed to
be taking place in the asymptotic region in the case of long-range Coulomb interactions. For
instance, it has been asserted that even at these large distances the target–electron interaction
plays an essential role in the asymmetry of the cusp (Illescas et al 2002). Let us investigate
these ideas more carefully.

Let us first assume that, at a given time after the collision, the target is so far away from
the emitted electron contributing to the ECC cusp that its influence is of no significance.
We consider an electron moving at a distance r′ from the projectile with relative velocity
v′ = v − vP. Whenever its relative kinetic energy mv′2/2 is smaller than the corresponding
potential energy −1/r ′ at a given time after the collision, it cannot escape from the projectile’s
attraction. This means that most of the electrons with small relative velocity v′ are prone
to remain captured. Thus, instead of a cusp, a hole with a clearcut edge at a given relative
velocity v′

h is observed, as shown in figure 3. The sharpness of this edge implies that most of
the electrons that satisfy the threshold condition mv′2/2 = 1/r ′ have velocities near v′

h (and
are at a distance r ′ ≈ 2/mv′

h
2 from the projectile), as is assumed in the ‘free expansion’ model

of Illescas et al (Illescas and Riera 1998, Illescas et al 2002). Those electrons with relative
velocities larger than v′

h (i.e. outside the ‘hole’) have enough kinetic energy to escape from the
projectile’s attraction and build up the ECC cusp with a final relative velocity approximately
equal to v′

∞ ≈ v′(1−2/mv′2r ′)1/2. Meanwhile, the electrons inside the ‘hole’ remain attached
to the projectile in a closed orbit and are never observed at asymptotic large distances. The
edge of this ECC hole has the same origin as the constant value of the recoil ion momentum
distribution at the kinematical threshold (Fiol et al 2000). The only difference is that, as the
integration proceeds, this threshold remains fixed, while v′

h in the electron velocity distribution
tends to zero and the 1/v′ divergence is slowly formed. Thus, the ECC electrons are already
there at a finite time after the collision, but not at a relative electron–projectile velocity equal
to zero (since those electrons have not enough energy to escape from the Coulomb projectile
attraction). In fact, the electrons near the edge of the hole will reach infinity with an asymptotic

velocity of the order of v′
∞ =

√
v′2 − 2/mr ′ ≈

√
v′2 − v′2

h, and the final velocity distribution
would read

dσ

dv′∞
= v′

v′∞

dσ

dv′ .

We clearly see that the presence of a finite value of dσ/dv′ at v′ = v′
h means that dσ/dv′∞

diverges like 1/v′∞, i.e. the ECC cusp is recovered.
Let us analyse this transformation in more detail for the case of the EEC cusp. The

calculations for the ECC peak proceed similarly, except for a simple Galilean transformation
(see, for instance, Tökési et al (1994)). For given values of the position r and velocity v of
the electron relative to the target nucleus, it is possible to get the final relative velocity v∞
assuming that the electron–target system evolves independently from the projectile, which
keeps an approximately constant velocity.
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By conservation of energy, the modulus of the asymptotic velocity reads

v∞ = v

√
1 − 1/r

mv2/2
.

By conservation of angular momentum, v∞ remains in the plane defined by r and v, with axis

x̂ = r/r

ŷ = (v − vx̂ cos α)/v sin α

and forms an angle θ with r that is given by (Samengo and Barrachina 1994)

cos θ = −1 +
2(v cos α − v∞)2

v2 + v2∞ − 2vv∞ cos α

where α is the angle between r and v. The exit angle θ keeps the same sign as α, while the
Glory angle is not reached (Samengo and Barrachina 1994), namely for α < arccos(v∞/v).
Otherwise, it becomes negative:

θ ∈ [0, π ] if α � arccos(v∞/v)

θ ∈ (−π, 0] if α > arccos(v∞/v)

Finally, the asymptotic relative electron–target velocity reads

v∞ = v∞[cos θ x̂ + sin θ ŷ]. (4)

We have re-plotted the same emitted electron spectra shown in figure 3 but in terms of
the new ‘corrected’ electron velocities (4) with respect to the target nucleus and projectile
for the EEC and ECC cusps, respectively. Even though this calculation implies two distinct
projections of the electron trajectories onto the Coulomb orbits around the target or projectile
centres, both coincide throughout velocity space except in the close vicinity of v = 0 and vP,
respectively, where they change the ‘holes’ into diverging ‘cusps’. When plotted in this way, all
the curves, for R equal to 100, 300, 1000, 3000, 10 000, 30 000 and 100 000 au, coincide with
the one depicted in figure 3 as corresponding to R → ∞, and clearly show the characteristic
EEC and ECC divergencies independently of the computing time. Already at R = 60 au no
further migration between the ionization, excitation and charge transfer channels was observed
within the statistic employed in our calculation, defining a limit between what we might call
the collisional and asymptotic regimes. The previous result shows that if the calculation is
stopped at a relatively small distance of the order of 100 au within the asymptotic zone, and the
evolution of the electron in the field of the target nucleus or projectile is analytically continued
by means of equation (4), the EEC and ECC cusps are neatly recovered. Furthermore, their
overall shapes and asymmetries seem to be unaffected by the asymptotic interaction with the
other collision partner. In conclusion, it is not necessary to let the program proceed up to an
internuclear distance of the order of 105 au or larger to get the EEC or ECC cusps, since they
can be easily recovered by means of a simple transformation in agreement with the common
understanding of cusp formation, as provided by the final state interaction theory (Barrachina
1997). Let us finally mention that the diverging nature of the ECC cusp in a CTMC calculation
was shown in a previous paper (Fiol et al 2000) as being related to the constant value reached
by the recoil ion momentum distribution at its kinematic threshold.

Next, we wanted to study the role played by the focusing of the electrons in the attractive
field of the projectile. It was proposed that this is an important mechanism for cusp production,
and that it is mainly operable at large internuclear distances. In fact, the progressive formation
of the ECC cusp in figure 3 clearly indicates a focusing of trajectories into the forward direction.
However, it is important to clarify in what sense the term ‘focusing’ has to be understood in
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Figure 4. Velocity threshold vh at the EEC and ECC cusps as a function of the internuclear distance
R. The straight lines depict a vh ∝ t−1/3 dependence.

the present context. By definition, a ‘focusing’ process would involve a perceptible deviation
of the emitted electron from a straight line trajectory due to its interaction with the projectile or
target nucleus. However, this is not the case when, for instance, the buildup of the ECC cusp
is observed from a reference system attached to the projectile. To check this assumption, we
re-plotted figure 3, but correcting only the energy and not the angle of the asymptotic electron
velocity, namely

v∞ =
√

1 − 1/r

mT v2/2
v.

These curves are not reproduced here, since they are again identical to the one shown in figure 3
for R → ∞. This result indicates that there is no conflict between the idea of an asymptotic
focusing mechanism and the final state interaction description of cusp formation as an angle
independent (i.e. s-wave) process. In fact, even for not-so-large values of R, the electrons that
build up the cusps are escaping from the target nucleus or the projectile in an approximately
straight trajectory. In figure 4 we show a double log graph of the velocity threshold vh that
separates the continuum from bound electrons at the EEC and ECC cusps as a function of the
internuclear distance R. It is readily observed that these two quantities are related by a law,
vh ∝ t−1/3. This simple result is easily obtained within a ‘free expansion’ model (Illescas and
Riera 1998, Sidky et al 2000, Illescas et al 2002) by replacing r ≈ vht in the equation for the
velocity threshold, mv2

h/2 = 1/r .

4. Conclusions

In this paper we have employed the CTMC method to study the role played by the target and
the projectile on the formation of the EEC and ECC cusps in ion–atom collisions. Using a
variance reduction technique, we have shown that the CTMC description of cusp production is
in complete accordance with the general framework of any quantum mechanical model. One
important attribute of this description is that it decouples the actual ionization process from the
cusp production itself. Actually, the overall shape of the cusp seems to be decided during the
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collision stage, while its divergence builds up asymptotically, but mainly as the result of a two-
body process. Thus, it is not necessary to let the program proceed up to very large internuclear
distances to get the EEC or ECC cusps, since they can be neatly recovered by projecting the
electron trajectories onto two-body continuum orbits. Finally, we showed that the presence of
an asymptotic focusing mechanism does not contradict the final-state interaction description
of cusp formation.
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