MECÁNICA CLÁSICA

17 de enero de 2021

Capítulo 1: ESPACIO

Las preguntas verdaderamente serias son aquéllas que pueden ser formuladas hasta por un niño. Sólo las preguntas más ingenuas son verdaderamente serias. Son preguntas que no tienen respuesta. Una pregunta que no tiene respuesta es una barrera que no puede atravesarse. Dicho de otro modo: precisamente las preguntas que no tienen respuesta son las que determinan las posibilidades del ser humano, son las que trazan las fronteras de la existencia del hombre. – Milan Kundera: “La insoportable levedad del ser” (1984).

31 de enero de 2021

Capítulo 2: COORDENADAS

Ahora bien, un sistema de coordenadas es una invención del científico que facilita la expresión de las regularidades que encuentra en la experiencia. No es en sí mismo algo que se encuentre en la experiencia; es una construcción puramente imaginaria de la que algunos científicos han intentado prescindir, pero que, sin embargo, se ha establecido firmemente como parte del lenguaje del físico, por así decirlo. – H. Dingle: The President’s address Mon. Not. R. Astron. Soc. 113 (3) 269 (1953)

14 de febrero de 2021

Capítulo 3: TIEMPO

Quid est ergo tempus? Si nemo ex me quaerat, scio; si quaerenti explicare velim, nescio. / ¿Entonces, qué es el tiempo? Si no me lo preguntan, lo sé; si me lo preguntan, lo ignoro. – Aurelius Augustinus: “Confessionum Libri Tredecim”, Liber XI, caput XIV Temporis differentiae tres (400).

28 de febrero de 2021

Capítulo 4: ESPACIO – TIEMPO

El tiempo absoluto, verdadero y matemático, por sí mismo, y por su propia naturaleza, fluye equitativamente sin tener en cuenta nada externo… El espacio absoluto, en su propia naturaleza, sin tener en cuenta nada externo, permanece siempre similar e inamovible… – Isaac Newton: “Philosophiae Naturalis Principia Mathematica” (1686)

14 de marzo de 2021

Capítulo 5: INERCIA

Masa: del lat. Massa, y este del gr. μᾶζα mâza . 1. Fís . Magnitud física que expresa la cantidad de materia de un cuerpo, medida por la inercia de este… – Diccionario de la lengua española, Real academia española. Actualización 2019.

28 de marzo de 2021

Capítulo 6: FUERZA

Al principio (si algo así existió), Dios creó las leyes de movimiento de Newton junto con las masas y las fuerzas necesarias. Y eso fue todo. Todo lo demás, todo lo que está más allá de esto, se puede obtener por medio de la deducción usando métodos matemáticos apropiados. – Albert Einstein “Autobiographical Notes. (1946)” 19; en Albert Einstein, Alice Calaprice, Freeman Dyson , The Ultimate Quotable Einstein (2011), 397.

11 de abril de 2021

Capítulo 7: NEWTON

No sé lo que puedo parecerle al mundo, pero yo me siento como un niño que juega en la orilla del mar. Me desvío de vez en cuando para encontrar una piedra más lisa o un caparazón más bonito que lo normal, mientras que el gran océano de la verdad yace sin descubrir ante mí. – Frase atribuida a Newton por J. Spence: Anecdotes, Observations and Characters, of Books and Men (1820)

25 de abril de 2021

Capítulo 8: ROTACIÓN

El final está cerca “, dijo Moridin.”La Rueda ha gemido en su última rotación, el reloj ha perdido su resorte, la serpiente lanza sus últimos jadeos”. – Robert Jordan & Brandon Sanderson: The Gathering Storm, Book 12 of the Wheel of Time (2009).

9 de mayo de 2021

Capítulo 9: LAPLACE

Il est facile de voir que… – Pierre Simon Laplace: Traité de mécanique céleste (1798 – 1825)

23 de mayo de 2021

Capítulo 10: CORIOLIS

Sabía que la Tierra estaba girando, y yo con ella, y Saint Martin des Champs y todo París conmigo y que juntos girábamos bajo el Péndulo, cuyo plano en realidad jamás cambiaba de dirección. – Umberto Eco: El Péndulo de Foucault (1988).

6 de junio de 2021

Capítulo 11: EÖTVÖS

“La Guía dice que volar es un arte”, dijo Ford, “o más bien una habilidad especial. La habilidad radica en aprender a tirarse al suelo y fallar.” – Douglas Adams: Life, the universe and everything (1982).

20 de junio de 2021

Capítulo 12: CANTIDAD DE MOVIMIENTO

Un miliciano filósofo que nos acompañaba recogió el trozo del plomo al pie de la biblioteca: “Es increíble que esto pueda matar a un hombre. ¿Qué daño quieren ustedes que le cause al organismo un pedacito de metal de esta clase?” – “¿…?” -“¡Lo terrible es la velocidad que trae! ¡Lo que mata es la velocidad! …” – Alejo Carpentier: Palabras en el tiempo (1984).

4 de julio de 2021

Capítulo 13: ENERGÍA

Toda la vida del universo puede considerarse como manifestaciones de energía disfrazadas de diversas formas, y todos los cambios en el universo como energía que corre de una de estas formas a la otra, pero siempre sin alterar la cantidad total. – Sir James Jeans: The Universe Around Us (Cambridge, 1929).

18 de julio de 2021

Capítulo 14: MOMENTO ANGULAR

Mensus eram coelos, nunc Terrae metior umbras. Mens coelestis erat, corporis umbra jacet. (Solía medir los cielos, ahora mido las sombras de la Tierra. La mente pertenecía al cielo, ahora el cuerpo yace en la sombra). – Epitafio escrito por Johannes Kepler para sí mismo.

1 de agosto de 2021

Capítulo 15: LEY ARMÓNICA

… después de que había trabajado sin cesar durante un largo período, usando las observaciones de Brahe, descubrí las verdaderas distancias de las órbitas, al fin, al fin, la verdadera relación … venció fuertemente las sombras de mi mente, … con tal plenitud de concordancia entre mis diecisiete años de trabajo y este estudio actual mío, que al principio creí estar soñando… – Johannes Kepler: ”Harmonices Mundi” libri V (Linz, 1619).

15 de agosto de 2021

Capítulo 16: TITIUS – BODE – BLAGG

La señorita Blagg era de una disposición modesta y solitaria, de hecho, casi monacal, y rara vez se la veía en reuniones. […] Se interesó por la astronomía más bien tarde en su vida y sin ninguna preparación especial. Sin embargo, dejó su huella en la ciencia, y su nombre se proyecta a la posteridad…

29 de agosto de 2021

Capítulo 17: CUADRADO INVERSO

Y en el mismo año comencé a pensar sobre la gravedad extendiéndose hasta la órbita de la luna y […] de la regla de Kepler de los tiempos periódicos de los Planetas siendo en proporción sesquiáltera de sus distancias desde el centro de sus orbitas, deduje que las fuerzas que mantienen los Planetas en sus órbitas debían [ser] recíprocamente como los cuadrados de sus distancias desde los centros sobre los que ellas giraban.

12 de setiembre de 2021

Capítulo 18: GRAVEDAD

La Luna gravita hacia la Tierra, y por la misma fuerza de la gravedad es continuamente extraída de un movimiento rectilíneo, y retenida en su órbita. – Isaac Newton

Próximamente

Capítulo 19: HOOKE

La teoría de los resortes, aunque intentada por diversos matemáticos eminentes de esta época, hasta ahora no ha sido publicada por ninguno. Han pasado casi dieciocho años desde que yo la encontré, pero decidiendo aplicarla a algún caso particular, omití su publicación. – Robert Hooke

TEMARIO TENTATIVO

Longitud y tiempo 
  Rudolf Carnap 
  La longitud 
  Sistema Internacional de Unidades: SI
  El tiempo
  Algunas definiciones cinemáticas
  Rango de validez
  Las leyes científicas 

Las leyes de Newton 
  Una reunión de amigos en el Londres de 84
  Publicación de los Principia
  Economía intelectual de la Mecánica 
  Primera Ley de Newton o Ley de Inercia
  Definición de la masa inercial
  Conservación de la cantidad de movimiento
  Segunda ley de Newton
  Tercera Ley de Newton o Ley de Acción y Reacción 
  Ley de superposición de fuerzas
 
Leyes de conservación
  Conservación de la cantidad de movimiento
  Centro de masa
  Problema equivalente de un cuerpo
  La "fuerza viva"
  Trabajo y energía 
  Fuerzas conservativas 
  ¿De quién es la energía potencial?
  Energía cinética del problema equivalente de un cuerpo 
  Energía de un sistema de dos cuerpos de masas muy distintas
  Corrección isotópica de la energía del átomo hidrogenoide
  Teorema del Virial
 
Impulso Angular 
  Johannes Kepler
  Las primeras dos leyes de Kepler
  Conservación del impulso angular
  Impulso angular intrínseco
  Conservación de la velocidad areolar
  Constantes de movimiento
 
La Ley de la Gravitación Universal
  La Ley Armónica de Kepler
  La Gran Plaga de1665
  Isaac Newton
  La ley de fuerza de cuadrado inverso
  Masa gravitatoria
  Masa gravitatoria y masa inercial
  ¡Newton mide la distancia a la Luna!
  La ley de cuadrado inverso en electricidad y magnetismo
  Determinación de la constante de gravitación universal
  La ley de Titius-Bode
  Descubrimiento de nuevos planetas
 
Fuerzas conservativas
  Interacción elástica
  Moléculas diatómicas 
  Fuerzas centrales conservativas
  Interacción entre átomos 
  Hipotesis non fingo
 
Fuerzas centrales
  Problema unidimensional equivalente
  Ecuación diferencial de las órbitas
  Resolución completa del problema
  Principales características de las órbitas
  1 puntos de retorno 
  2 caída al centro de fuerza
  3 órbitas acotadas y cerradas
  4 órbitas circulares y orbitación 
  5 velocidad angular
  Correspondencia entre Hooke y Newton
  El problema de Kepler
  Orbitas elípticas 
  Dependencia temporal de las órbitas de Kepler
  Conservación del vector de Runge-Lenz
  Ley de fuerzas para órbitas cónicas
  El último asalto de la pelea entre Newton y Hooke 
  ¿Quién ganó la apuesta de Sir Christophen Wren? 
 
Fuerzas no conservativas 
  Interacción de rozamiento
  Sociedad conspiradora de los demonios del rozamiento
  Teorías refutables
  El pensamiento escolástico
  Primeras observaciones telescópicas
  Modelo aristotélico de la caida libre
  Fuerza de arrastre y sustentación
  Velocidad terminal
  Galileo Galilei
  Experimento del plano inclinado
  Crítica del experimento del plano inclinado
  Thomas Kuhn
 
Principio de D'Alembert
  Mme Claudine-Alexandrine Guérin, Marquesa de Tencin
  Jean Le Rond d'Alembert
  Principio de D'Alembert
  Interpretación estática del Principio de d'Alembert
  Ligaduras 
  Principio de los Trabajos Virtuales 
  Grados de libertad y variables generalizadas 
 
Ecuación de Lagrange 
  Repercusión de los Principia en la Europa continental
  Giuseppe Luigi Lagrangia 
  Introducción a las ecuaciones de Lagrange
  Ecuaciones de Lagrange
  Demostración de las ecuaciones de Lagrange
  Potencial de Schering
  Función de disipación de Rayleigh
  Tratamiento de los vínculos anholónomos
  Interpretación de los multiplicadores de Lagrange
  No unicidad del Lagrangiano
 
Teoremas de conservación
  Teorema general de conservación
  Coordenadas de traslación y rotación
  Propiedades de simetría
  Coordenadas cíclicas y fuerzas generalizadas
  Conservación del Hamiltoniano 
  Conservación de la Energía 
  Las ecuaciones canónicas ó de Hamilton 
  Teoremas de conservación en la formulación Hamiltoniana 
  ¿Cómo obtenemos una ley científica? 
  ¿Es la Física una ciencia deductiva?
 
Cálculo de variaciones
  Principio de Fermat 
  La familia Bernoulli 
  Leonhard Euler 
  Cálculo de variaciones 
  Ecuación de Euler - Lagrange 
  El problema de la braquistocrona 
  El péndulo cicloidad o tautocrono 
  Problemas de isoperímetro 

Principio de Hamilton 
  Sir William Rowan Hamilton 
  Principio de Hamilton 
  Generalización del Principio de Hamilton 
  Principio de Hamilton modificado 
 
Principio de Mínima Acción 
  Introducción 
  Variación general de las variables 
  Principio de Mínima Acción 
  Geodésicas 
  Pierre-Louis Moreau de Maupertuis 
  Un problema de denominación 
  Analogía entre la mecánica y la óptica geométrica
  Comentario final sobre los Principios Integrales
  Gottfried Wilhelm Leibniz 

 Invariantes integrales 
  Invariante integral de Poincaré - Cartan
  Invariante integral universal de Poincaré 
  Teorema de Lee Hwa-Chung 
  Invariancia de volumen en el espacio de las fases 
  Teorema de Liouville 
  Corchetes de Poisson 
  La identidad de Jacobi 
 
Transformaciones canónicas
  Introducción 
  Función generatriz 
  Transformaciones canónicas libres 
  Ejemplos 
  La ecuación de Hamilton - Jacobi 
  Función principal de Hamilton 
  Algunas propiedades adicionales de las transformaciones canónicas 
  Tratamiento de las coordenadas cíclicas 
  Oscilador unidimensional 
  Partícula libre 
  Ondas de acción 
  Ecuación de Schrödinger